Instructions for use Title Evolution of a divinyl chlorophyll-based photosystem in Prochlorococcus

نویسندگان

  • Author Ito
  • Hisashi Tanaka
  • Hisashi Ito
  • Ayumi Tanaka
چکیده

Acquisition of new photosynthetic pigments has been a crucial process for the evolution of photosynthesis and photosynthetic organisms. In this process, pigment-binding proteins must evolve to fit new pigments. Prochlorococcus is a unique photosynthetic organism that uses divinyl chlorophyll (DVChl) instead of monovinyl chlorophyll (MVChl). However, cyanobacterial mutants that accumulate DVChl immediately die even under medium-light conditions, suggesting that chlorophyll (Chl)-binding proteins had to evolve to fit to DVChl concurrently with Prochlorococcus evolution. To elucidate the co-evolutionary process of Chl and Chl-binding proteins during the establishment of DVChl-based photosystems, we first compared the amino acid sequences of Chl-binding proteins in Prochlorococcus with those in other photosynthetic organisms. Two amino acid residues of the D1 protein, V205 and G282, are conserved in MVChl-based photosystems, but in Prochlorococcus, they are substituted with M205 and C282, respectively. According to the solved photosystem II structure, these amino acids are not involved in Chl binding. In order to mimic Prochlorococcus, V205 was mutated to M205 in the D1 protein from Synechocystis sp. PCC6803 and Synechocystis dvr mutant was transformed with this construct. Although these transgenic cells could not grow under highlight conditions, they acquired light tolerance and grew under medium-light conditions, whereas untransformed dvr mutants could not survive. Substitution of G282 for C282 contributed additional light tolerance, suggesting that the amino acid substitutions in the D1 protein played an essential role in the development of DVChl-based photosystems. Here, we discuss the co-evolution of a photosynthetic pigment and its binding protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of a divinyl chlorophyll-based photosystem in Prochlorococcus.

Acquisition of new photosynthetic pigments has been a crucial process for the evolution of photosynthesis and photosynthetic organisms. In this process, pigment-binding proteins must evolve to fit new pigments. Prochlorococcus is a unique photosynthetic organism that uses divinyl chlorophyll (DVChl) instead of monovinyl chlorophyll. However, cyanobacterial mutants that accumulate DVChl immediat...

متن کامل

Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species.

Chlorophyll metabolism has been extensively studied with various organisms, and almost all of the chlorophyll biosynthetic genes have been identified in higher plants. However, only the gene for 3,8-divinyl protochlorophyllide a 8-vinyl reductase (DVR), which is indispensable for monovinyl chlorophyll synthesis, has not been identified yet. In this study, we isolated an Arabidopsis thaliana mut...

متن کامل

Light-harvesting antenna function of phycoerythrin in prochlorococcus marinus

Prochlorococcus marinus strain CCMP 1375 is the sole prokaryote to possess phycoerythrin in addition to (divinyl-)chlorophyll a/b binding antenna complexes. Here we demonstrate, employing a spectrofluorimetric assay, that phycoerythrin serves a light-harvesting antenna function (transfers energy to chlorophylls).

متن کامل

Prochlorococcus, a marine photosynthetic prokaryote of global significance.

The minute photosynthetic prokaryote Prochlorococcus, which was discovered about 10 years ago, has proven exceptional from several standpoints. Its tiny size (0.5 to 0.7 microm in diameter) makes it the smallest known photosynthetic organism. Its ubiquity within the 40 degrees S to 40 degrees N latitudinal band of oceans and its occurrence at high density from the surface down to depths of 200 ...

متن کامل

Global gene expression of Prochlorococcus ecotypes in response to changes in nitrogen availability

Nitrogen (N) often limits biological productivity in the oceanic gyres where Prochlorococcus is the most abundant photosynthetic organism. The Prochlorococcus community is composed of strains, such as MED4 and MIT9313, that have different N utilization capabilities and that belong to ecotypes with different depth distributions. An interstrain comparison of how Prochlorococcus responds to change...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017